rayny

A Facile FeCl₃/I₂-Catalyzed Aerobic Oxidative Coupling Reaction: Synthesis of Tetrasubstituted Imidazoles from Amidines and Chalcones

Yuelu Zhu,† Cheng Li,† Jidong Zhang,† Mengyao She,† Wei Sun,† Kerou Wan,‡ Yaqi Wang,† Bin Yin,† Ping Liu,† and Jianli Li*,†

† Key Laboratory of Synthetic [an](#page-2-0)d Natural Functional Molecule Chemistry of the Ministry of Education and College of Chemistry & Materials Science, Northwest University, Xi'an Shaanxi 710127, P. R. China

‡ Xi'an Catalyst Chemical Co., Ltd., Xi'an Shaanxi 710016, P. R. China

S Supporting Information

[AB](#page-2-0)STRACT: [A facile and](#page-2-0) efficient route for the synthesis of tetrasubstituted imidazoles from amidines and chalcones via $FeCl₃/$ I_2 -catalyzed aerobic oxidative coupling has been developed. This new strategy is featured by high regioselectivity and yields, good functional group tolerance, and mild reaction conditions.

 \prod midazoles, one of the most valuable heterocyclic compounds, have been found in many natural products¹ and midazoles, one of the most valuable heterocyclic comwidely applied in functional materials. 2 In particular, they also have good pharmacological activities,³ such as antif[un](#page-2-0)gal,⁴ antitumor, 5 antibacterial, 6 antiplasmod[iu](#page-2-0)m, 7 and anti-inflammatory.⁸ Current synthesis methods for i[m](#page-2-0)idazole derivatives ar[e](#page-3-0) mainly re[st](#page-3-0)ricted to les[s-](#page-3-0)substituted imid[az](#page-3-0)oles,⁹ while only a han[df](#page-3-0)ul of them provided access to tetrasubstituted imidazoles.¹⁰ Particularly during the last decades[,](#page-3-0) several new methodologies have emerged, such as cross-coupling of aldi[min](#page-3-0)es,¹¹ the coupling reaction of 2-azido acrylates and nitrones, 12 Cu-catalyzed cycloaddition of amidines and nitroolefins,¹³ [th](#page-3-0)e three-component reaction,¹⁴ Ni-catalyzed dehydrogena[tio](#page-3-0)n of benzylic-type imines,¹⁵ and Zn-catalyzed cycliza[tio](#page-3-0)n of 2-(tetrazol-5-yl)-2H-az[irin](#page-3-0)es and imines.¹⁶ However, most approaches encount[er](#page-3-0) some drawbacks, including high catalyst loading, substrates unavailable, limit[ed](#page-3-0) applications, long reaction time or low yields under harsh reaction conditions. Moreover, most substrates are limited to 1,2-diketone, aldehydes and primary amines, 17 so those procedures restrict the synthesis of tetrasubstituted imidazoles and usually involve poor regioselectivity. There[for](#page-3-0)e, a novel, practical and efficient protocol for a straightforward construction of tetrasubstituted imidazoles remains highly desirable.

Recently, the direct oxidative C−H bond functionalization by iron and iodine has gained considerable attention, and is an excellent way to form various heterocycles from the readily available reactants.¹⁸ This research shows that, compared to rare metal catalyst, the iron and iodine not only are available, inexpensive, and e[nvi](#page-3-0)ronmentally benign catalysts, but also can offer complementary selectivity and impressive reactivity. Therefore, these results encouraged us to hypothesize that it may be a new protocol for the synthesis of tetrasubstituted imidazoles through iron and iodine cocatalyzed oxidative C−H

functionalization of amidines with chalcones. On the basis of the above hypothesis, we present here the first successful attempt on a $FeCl₃/I₂$ -catalyzed aerobic oxidative coupling of amidines with chalcones for synthesizing tetrasubstituted imidazoles.

We began our study by taking N-phenylbenzamidine (1a) and chalcone (2a) as the model substrates. The results are summarized in Table 1. Delightedly, when the reaction was carried out employing a combination of $FeCl₃$ (20 mol %) and I_2 (10 mol %) i[n toluene](#page-1-0) at 110 °C under air atmosphere, the desired product was obtained in 56% (Table 1, entry1). Control experiments showed the necessities of both $FeCl₃$ and I_2 for this reaction, without any resulting in t[he lack of](#page-1-0) reactivity (Table 1, entries 2−3). Lower yields were obtained by use of $Fe(NO₃)₃·9H₂O$, $FeBr₃$, $CuCl₂$, and $Cu(OAc)₂$ instead of [FeCl3](#page-1-0) (Table 1, entries 4−7). Other iodide ion sources, such as NaI, KI, and ZnI_2 were also examined, resulting in a sharp decreas[e of yie](#page-1-0)ld (Table 1, entries 8−10). Other common solvents, such as DMSO, DMF, DMA, chlorobenzene, 1,2 dichloroethane (1,2[-DCE\) a](#page-1-0)nd dioxane, were also screened, and the results showed that chlorobenzene was the most suitable solvent for this reaction (Table 1, entries 11−16). After further elaboration of the reaction conditions (Table 1, entries 17−20), including varying tempe[rature an](#page-1-0)d catalyst loading, the yield of desired product was improved to 85% [when oxy](#page-1-0)gen gas was used as a oxidant (Table 1, entry 17).

With the optimized conditions in hand, the scope of various N-arylbenzamidines with different substituents on one or both phenyl rings were tes[ted](#page-1-0) [\(Sch](#page-1-0)eme 1). With regard to the electronic effects, it was found that electron-donating substituents arylamidines (3ba, 3ea, 3ia and 3ja) showed better reactivities and ga[ve](#page-1-0) [higher](#page-1-0) yields than electron-

Received: June 27, 2015 Published: July 21, 2015

Table 1. Optimization of Reaction Conditions^a

a Reaction conditions: 0.6 mmol of 1a and 0.5 mmol of 2a in the presence of catalyst in solvent (2 mL) for 10 h in air. b^{I} Solated yields.

Exection performed under Q, balloon $\frac{d}{d}$ The reaction was carried out Reaction performed under O_2 balloon. d The reaction was carried out at 120 \degree C. \degree The reaction was carried out at 90 \degree C.

withdrawing ones (3ga, 3ha, 3la and 3ma). It should benoted that the steric hindrance of the substrates almostly have no effect on the yields (3ca, 3da, 3pa and 3ra). Notably, Nphenylthiophene-2-carboximidamide could also be well tolerated, and the yield of the corresponding product (3na) is 74%. And substrate scope not limited to arylated benzamidines, C-alkylimidazole 3ta was isolated in reasonable yields by using this new methodology. To our delight, the structure of 3na and 3sa were unambiguously confirmed by X-ray diffraction analysis. On the whole, for N-arylbenzamidines, these reactions displayed high functional group tolerance and gave the desired products in moderate to high yields.

Furthermore, chalcones with different substituents were also investigated, and satisfactorily, imidazoles could be obtained smoothly with good results (Scheme 2). When the similar groups are located on the phenyl rings whatever adjacent to carbonyl groups or connected to C−C double bond, they groups had no significant impact on the yields which are high (from 72 to 85%). But the substrates with electron-donating group substituted on phenyl rings (3ae, 3af, 3ag, and 3ak) show better reactivities and give higher yields than those with electron-withdrawing group ones (3ah, 3ai, 3aj, and 3al). Besides, chalcones bearing aromatic heterocycles are also suitable for the oxidative coupling reactions, such as 3am in 76% yield.

Following our synthetic studies, some controlled experiments were carried out to gain insight into the reaction mechanism (Scheme 3). No significant decrease in yield was observed when a radical scavenger TEMPO (1.5 equiv) was added to the r[eaction, th](#page-2-0)us a radical process is probably unlikely to be involved (Scheme 3, eq A). The reaction under argon

Scheme 1. Substrate Scope of Amidines^a

^aReaction conditions: 1 (0.6 mmol), 2a (0.5 mmol), $FeCl₃$ (20 mol %), I_2 (10 mol %), PhCl (2 mL), O₂ balloon, 110 °C, 10 h; isolated yields.

Scheme 2. Substrate Scope of Chalcones^a

^aReaction conditions: 1a (0.6 mmol), 2 (0.5 mmol), $FeCl₃$ (20 mol %), I₂ (10 mol %), PhCl (2 mL), O₂ balloon, 110 °C, 10 h; isolated yields.

atmosphere delivered imidazolidine 4aa in 14% yield as the only product, which indicates that the oxygen is critical to the formation of imidazole and the turnover of the catalytic cycle (Scheme 3, eq B). Furthermore, when the reactions were quenched at 2 h, imidazoline 4aa was isolated as the major

product (43% yield, eq C), along with 23% of imidazole 3aa. Extending the reaction time to 10 h, imidazoline 4aa was almost disappeared and the desired imidazole 3aa was obtained in 85% yield. These results suggest that the reaction proceeds through the cyclization of the amidines and chalcones to form the imidazoline first, followed by dehydrogenative oxidation of the tetrasubstituted imidazoline to the imidazole.

On the basis of the aforementioned results and the literature reports,¹⁹ a plausible mechanism concerning the iron and iodine cocatalyzed coupling between 1a and 2a is proposed in Schem[e 4](#page-3-0). The reaction is initiated by the activation of chalcone

 $(2a)$ by FeCl₃, in the next step, the addition of Narylbenzamidines $(1a)$ to A forming the Michael adduct B, which was observed by HRMS. The Michael adduct B is in tautomerization with the enol form C. Then, C reacts with I_2 to produce intermediate D, followed by a subsequently intramolecular cyclization to afford 4aa, which is oxidated to the desired product 3aa under aerobic conditions. In the end, iodide anion is oxidized to iodine by $FeCl₃$, and $Fe(II)$ is further oxidized to Fe(III) in the oxygen atmosphere to complete the catalytic cycle. As part of our ongoing effort, we also calculated Fukui function $\overline{f}_{(r)}$ of compound **B** (Figure 1). The $f_{(r)}$ calculation result indicates that the nitrogen atom that connected to the benzene ring is the strongest site for electrophilic attack. However, it is still difficult for this nitrogen atom to direct attack the α -carbon of the ketone. When the hydrogen on the α -carbon of the ketone is substituted by iodine, which as a good leaving group, it will become very easy to undergo cyclization. This result also proved the tentative mechanism.

In summary, a new facile and efficient route for the synthesis of tetrasubstituted imidazoles from amidines and chalcones via $FeCl₃/I₂$ -catalyzed aerobic oxidative coupling has been developed. The reaction employs easily available amidines

Figure 1. (a) The condensed Fukui function $f(x)$ of nitrogen and other surrounding atoms in compound B. (b) The 3D representation of the Fukui function $f_{(r)}$ of the iso-value of 0.003 a.u. for compound B (positive for red color and negative for green color).

and chalcones as the starting materials and tolerates a wide range of functional groups. This operationally practical protocol might be a useful and widely applicable method in medicinal, organic, and material chemistry.

■ ASSOCIATED CONTENT

S Supporting Information

General experimental procedure, characterization data of the compounds, and CIF data for 3na and 3sa. The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.5b01854.

■ AUTHOR INFORMATION

Corresponding Author

*E-mail: lijianli@nwu.edu.cn.

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

We thank the National Natural Science Foundation of China (NSFC 21272184; 20972124; J1210057 and 21143010), the Shaanxi Provincial Natural Science Fund Project (No. 2015JZ003) and the Xi'an City Science and Technology Project (No. CXY1429(6); CXY1434(7) for financial support.

■ REFERENCES

(1) (a) Luca, D. L. Curr. Med. Chem. 2006, 13, 1. (b) Zhong, J. Nat. Prod. Rep. 2009, 26, 382. (c) Xiong, F.; Chen, X.; Chen, F. Tetrahedron: Asymmetry 2010, 21, 665. (d) Roue, M.; Domart-Coulon, I.; Ereskovsky, A.; Djediat, C.; Perez, T.; Bourguet-Kondracki, M. L. J. Nat. Prod. 2010, 73, 1277.

(2) (a) Maeda, Y.; Nishimura, T.; Uemura, S. Bull. Chem. Soc. Jpn. 2003, 76, 2399. (b) Asensio, J. A.; Romero, P. G. Fuel Cells 2005, 5, 336. (c) Singh, N.; Jang, D. O. Org. Lett. 2007, 9, 1991. (d) Nagarajan, N.; Velmurugan, G.; Prakash, A.; Shakti, N.; Katiyar, M.; Venuvanalingam, P.; Renganathan, R. Chem. - Asian J. 2014, 9, 294. (e) Kwon, J. E.; Park, S.; Park, S. Y. J. Am. Chem. Soc. 2013, 135, 11239. (f) Lee, C.; Yuan, Y.; Chen, J.; Lu, F.; Tong, Q.; Yang, Q.; Mo, H. Chem. Mater. 2013, 25, 4957. (g) Jezewski, A.; Hammann, T.; ̇ Cywiński, P. J.; Gryko, D. T. J. Phys. Chem. B 2015, 119, 2507.

(3) (a) Bonezzi, K.; Taraboletti, G.; Borsotti, P.; Bellina, F.; Rossi, R.; Giavazzi, R. J. Med. Chem. 2009, 52, 9606. (b) Forte, B.; Malgesini, B.; Piutti, C.; Quartieri, F.; Scolaro, A.; Papeo, G. Mar. Drugs 2009, 7, 705. (c) Dietrich, J.; Gokhale, V.; Wang, X.; Hurley, L. H.; Flynn, G. A. Bioorg. Med. Chem. 2010, 18, 292. (d) Sadek, B. Pharma Chem. 2011, 3, 410. (e) Jin, C. H.; Krishnaiah, M.; Sreenu, D.; Subrahmanyam, V. B.; Rao, K. S.; Lee, H. J.; Park, S. J.; Park, H. J.; Lee, K.; Sheen, Y. Y.; Kim, D. K. J. Med. Chem. 2014, 57, 4213. (f) Zhang, L.; Peng, X.; Damu, G. L. V.; Geng, R.; Zhou, C. Med. Res. Rev. 2014, 34, 340.

(4) (a) Wolff, D. J.; Datto, G. A.; Samatovicz, R. A. J. Biol. Chem. 1993, 268, 9430. (b) Sennequier, N.; Wolan, D.; Stuehr, D. J. J. Biol. Chem. 1999, 274, 930. (c) Koga, H.; Nanjoh, Y.; Makimura, K.; Tsuboi, R. Med. Mycol. 2009, 47, 640. (d) Zoete, V.; Michielin, O.; Rohrig, U. F.; Majjigapu, S. R.; Chambon, M.; Bron, S.; Pilotte, L. Eur. J. Med. Chem. 2014, 84, 284.

(5) (a) Fukui, M.; Inaba, M.; Tsukagoshi, S.; Sakurai, Y. Cancer Res. 1982, 42, 1098. (b) Atwell, G. J.; Fan, J.; Tan, K.; Denny, W. A. J. Med. Chem. 1998, 41, 4744. (c) Al-Raqa, S. Y.; ElSharief, A. M. S.; Khalil, S. M. E.; Al-Amri, A. M. Heteroat. Chem. 2006, 7, 643.

(6) (a) Vijesh, A.; Isloor, A. M.; Telkar, S.; Peethambar, S.; Rai, S.; Isloor, N. Eur. J. Med. Chem. 2011, 46, 3531. (b) Roush, W. R.; Choi, J. Y.; Plummer, M. S.; Starr, J.; Desbonnet, C. R.; Soutter, H.; Chang, J. J. Med. Chem. 2012, 55, 852. (c) Yurttaş, L.; Duran, M.; Demirayak, Ş.; Gençer, H. K.; Tunalı, Y. Bioorg. Med. Chem. Lett. 2013, 23, 6764.

(7) Vlahakis, J. Z.; Lazar, C.; Crandall, I. E.; Szarek, W. A. Bioorg. Med. Chem. 2010, 18, 6184.

(8) (a) Lee, J. C.; Laydon, J. T.; Mcdonnell, P. C. Nature 1994, 372, 739. (b) Adams, J. L.; Boehm, J. C.; Gallagher, T. F.; Kassis, S.; Webb, E. F.; Hall, R.; Sorenson, M.; Garigipati, R.; Griswoldc, D. E.; Lee, J. C. Bioorg. Med. Chem. Lett. 2001, 11, 2867.

(9) (a) Bredereck, H.; Gompper, R.; Bangert, R.; Herlinger, H. Angew. Chem. 1958, 70, 269. (b) Tan, K. L.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2001, 123, 2685. (c) Fukumoto, Y.; Sawada, K.; Hagihara, M.; Chatani, N.; Murai, S. Angew. Chem., Int. Ed. 2002, 41, 2779. (d) Sezen, B.; Sames, D. J. Am. Chem. Soc. 2003, 125, 10580. (e) Zhong, Y.; Lee, J.; Reamer, R. A.; Askin, D. Org. Lett. 2004, 6, 929. (f) Zaman, S.; Mitsuru, K.; Abell, A. D. Org. Lett. 2005, 7, 609. (g) Delest, B.; Nshimyumukiza, P.; Fasbender, O.; Tinant, B.; Marchand-Brynaert, J.; Darro, F.; Robiette, R. J. Org. Chem. 2008, 73, 6816. (h) Huang, H.; Ji, X.; Wu, W.; Jiang, H. Adv. Synth. Catal. 2013, 355, 170. (i) Li, J.; Neuville, L. Org. Lett. 2013, 15, 1752. (j) Tong, S.; Wang, Q.; Wang, M.; Zhu, J. Angew. Chem., Int. Ed. 2015, 54, 1293. (h) Guo, X.; Shao, J.; Liu, H.; Chen, B.; Chen, W.; Yu, Y. RSC Adv. 2015, 5, 51559.

(10) (a) Lee, S.; Yoshida, K.; Matsushita, H.; Clapham, B.; Koch, G.; Zimmermann, J.; Janda, K. D. J. Org. Chem. 2004, 69, 8829. (b) Laufer, S. A.; Liedtke, A. J. Tetrahedron Lett. 2006, 47, 7199. (c) Kamijo, S.; Yamamoto, Y. Chem. - Asian J. 2007, 2, 568. (d) Ermolat'ev, D. S.; Van der Eycken, E. V. J. Org. Chem. 2008, 73, 6691. (e) Peshkov, V. A.; Pereshivko, O. P.; Sharma, S.; Meganathan, T.; Parmar, V. S.; Ermolat'ev, D.; Van der Eycken, S. E. V. J. Org. Chem. 2011, 76, 5867. (f) Perez-Caaveiro, C.; Perez, S. J.; Martinez, M. M.; Sarandeses, L. A. J. Org. Chem. 2014, 79, 9586.

(11) Kison, C.; Opatz, T. Chem. - Eur. J. 2009, 15, 843.

(12) Hu, B.; Wang, Z.; Ai, N.; Zheng, J.; Liu, X.; Shan, S.; Wang, Z. Org. Lett. 2011, 13, 6362.

(13) (a) Chen, B.; Tang, D.; Wu, P.; Liu, X.; Chen, Y.; Guo, S. J. Org. Chem. 2013, 78, 2746. (b) Chen, B.; Liu, X.; Wang, D. Tetrahedron 2013, 69, 9417. (c) Mitra, S.; Bagdi, A. K.; Majee, A.; Hajra, A. Tetrahedron Lett. 2013, 54, 4982. (d) Kumar, T.; Verma, D.; Menna-Barreto, R. F. S.; Valença, W. O.; da Silva Júnior, E. N.; Namboothiri, I. N. N. Org. Biomol. Chem. 2015, 13, 1996.

(14) (a) Nie, Y.; Wang, L.; Ding, M. J. Org. Chem. 2012, 77, 696. (b) Jiang, Z.; Lu, P.; Wang, Y. Org. Lett. 2012, 14, 6266. (c) Liu, X.; Wang, D.; Chen, Y.; Tang, D.; Chen, B. Adv. Synth. Catal. 2013, 355, 2798. (d) Chen, C.; Hu, W.; Yan, P.; Senadi, G. C.; Wang, J. Org. Lett. 2013, 15, 6116. (e) Pusch, S.; Opatz, T. Org. Lett. 2014, 16, 5430. (f) Aly, S.; Romashko, M.; Arndtsen, B. A. J. Org. Chem. 2015, 80, 2709.

(15) Tlahuext-Aca, A.; Hernández-Fajardo, O.; Arévalo, A.; García, J. J. Dalton Trans. 2014, 43, 15997.

(16) Cardoso, A. L.; Lemos, A.; Pinho e Melo, T. M. V. D. Eur. J. Org. Chem. 2014, 2014, 5159.

(17) For selected examples, see: (a) Mukhopadhyay, C.; Tapaswi, P. K.; Drew, M. G. B. Tetrahedron Lett. 2010, 51, 3944. (b) Sivakumar, K.; Kathirvel, A.; Lalitha, A. Tetrahedron Lett. 2010, 51, 3016. (c) Niknam, K.; Deris, A.; Naeimi, F.; Majleci, F. Tetrahedron Lett. 2011, 52, 4642. (d) Ramesh, K.; Murthy, S. N.; Karnakar, K.; Nageswar, Y. V. D.; Vijayalakhshmi, K.; Devi, B. L. A. P.; Prasad, R. B. N. Tetrahedron Lett. 2012, 53, 1126. (e) Kumar, D.; Kommi, D. N.; Bollineni, N.; Patela, A. R.; Chakraborti, A. K. Green Chem. 2012, 14, 2038. (f) Karimi, A. R.; Bayat, F. Tetrahedron Lett. 2013, 54, 45. (g) Moosavi-Zare, A. R.; Asgari, Z.; Zare, A.; Zolfigol, M. A.; Shekouhy, M. RSC Adv. 2014, 4, 60636. (h) Samanta, S.; Roy, D.; Khamarui, S.; Maiti, D. K. Chem. Commun. 2014, 50, 2477. (i) El-Remaily, M. A. A.; Abu-Dief, A. M. Tetrahedron 2015, 71, 2579. (j) Zolfigol, M. A.; Baghery, S.; Moosavi-Zare, A. R.; Vahdat, S. M. RSC Adv. 2015, 5, 32933. (k) Sarkar, R.; Mukhopadhyay, C. Eur. J. Org. Chem. 2015, 2015, 1246.

(18) Recent iron or iodine catalyzed C−H bond functionalization: (a) Wang, T.; Zhou, W.; Yin, H.; Ma, J.; Jiao, N. Angew. Chem., Int. Ed. 2012, 51, 10823. (b) Yang, F.; Tian, S. Angew. Chem., Int. Ed. 2013, 52, 4929. (c) Li, K.; Tan, G.; Huang, J.; Song, F.; You, J. Angew. Chem., Int. Ed. 2013, 52, 12942. (d) Shang, R.; Ilies, L.; Asako, S.; Nakamura, E. J. Am. Chem. Soc. 2014, 136, 14349. (e) Shen, J.; Zhu, S.; Cai, Y.; Xu, H.; Xie, X.; Zhou, Q. Angew. Chem., Int. Ed. 2014, 53, 13188. (f) Wang, X.; Gallardo-Donaire, J.; Martin, R. Angew. Chem., Int. Ed. 2014, 53, 11084. (g) Shang, R.; Ilies, L.; Asako, S.; Nakamura, E. J. Am. Chem. Soc. 2014, 136, 14349. (h) Brzozowski, M.; Forni, J. A.; Paul, S. G.; Polyzos, A. Chem. Commun. 2015, 51, 334.

(19) (a) Kaswan, P.; Pericherla, K.; Rajnikant; Kumar, A. Tetrahedron 2014, 70, 8539. (b) Mishra, S.; Monir, K.; Mitra, S.; Hajra, A. Org. Lett. 2014, 16, 6084. (c) Monir, K.; Bagdi, A. K.; Mishra, S.; Majee, A.; Hajraa, A. Adv. Synth. Catal. 2014, 356, 1105.